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Stresses, strains, elasticity, and plasticity  
 
 
2.1 Introduction  

In many engineering problems we consider the behaviour of an initially unstressed 
body to which we apply some first load-increment. We attempt to predict the consequent 
distribution of stress and strain in key zones of the body. Very often we assume that the 
material is perfectly elastic, and because of the assumed linearity of the relation between 
stress-increment and strain-increment the application of a second load-increment can be 
considered as a separate problem. Hence, we solve problems by applying each load-
increment to the unstressed body and superposing the solutions. Often, as engineers, we 
speak loosely of the relationship between stress-increment and strain-increment as a ‘stress 
– strain’ relationship, and when we come to study the behaviour of an inelastic material we 
may be handicapped by this imprecision. It becomes necessary in soil mechanics for us to 
consider the application of a stress-increment to a body that is initially stressed, and to 
consider the actual sequence of load-increments, dividing the loading sequence into a 
series of small but discrete steps. We shall be concerned with the changes of configuration 
of the body: each strain-increment will be dependent on the stress within the body at that 
particular stage of the loading sequence, and will also be dependent on the particular 
stress-increment then occurring.  

In this chapter we assume that our readers have an engineer’s working 
understanding of elastic stress analysis but we supplement this chapter with an appendix A 
(see page 293). We introduce briefly our notation for stress and stress-increment, but care 
will be needed in §2.4 when we consider strain-increment. We explain the concept of a 
tensor being divided into spherical and deviatoric parts, and show this in relation to the 
elastic constants: the axial compression or extension test gives engineers two elastic 
constants, which we relate to the more fundamental bulk and shear moduli. For elastic 
material the properties are independent of stress, but the first step in our understanding of 
inelastic material is to consider the representation of possible states of stress (other than the 
unstressed state) in principal stress space. We assume that our readers have an engineer’s 
working understanding of the concept of ‘yield functions’, which are functions that define 
the combinations of stress at which the material yields plastically according to one or other 
theory of the strength of materials. Having sketched two yield functions in principal stress 
space we will consider an aspect of the theory of plasticity that is less familiar to engineers: 
the association of a plastic strain-increment with yield at a certain combination of stresses. 
Underlying this associated ‘flow’ rule is a stability criterion, which we will need to 
understand and use, particularly in chapter 5. 
  

2.2 Stress 
We have defined the effective stress component normal to any plane of cleavage in 

a soil body in eq. (1.7). In this equation the pore-pressure uw, measured above atmospheric 
pressure, is subtracted from the (total) normal component of stress σ acting on the cleavage 
plane, but the tangential components of stress are unaltered. In Fig. 2.1 we see the total 
stress components familiar in engineering stress analysis, and in the following Fig. 2.2 we 
see the effective stress components written with tensor-suffix notation. 
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Fig. 2.1 Stresses on Small Cube: Engineering Notation 

 
The equivalence between these notations is as follows: 
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We use matrix notation to present these equations in the form 
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Fig. 2.2 Stresses on Small Cube: Tensor Suffix Notation 

 
In both figures we have used the same arbitrarily chosen set of Cartesian reference axes, 
labelling the directions (x, y, z) and (1, 2, 3) respectively. The stress components acting on 
the cleavage planes perpendicular to the 1-direction are 11'σ , 12'σ  and .'13σ  We have 
exactly similar cases for the other two pairs of planes, so that each stress component can be 
written as ij'σ  where the first suffix i refers to the direction of the normal to the cleavage 
plane in question, and the second suffix j refers to the direction of the stress component 
itself. It is assumed that the suffices i and j can be permuted through all the values 1, 2, and 
3 so that we can write 
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The relationships jiij '' σσ ≡ expressing the well-known requirement of equality of 
complementary shear stresses, mean that the array of nine stress components in eq. (2.1) is 
symmetrical, and necessarily degenerates into a set of only six independent components. 

At this stage it is important to appreciate the sign convention that has been adopted 
here; namely, compressive stresses have been taken as positive, and the shear stresses 
acting on the faces containing the reference axes (through P) as positive in the positive 
directions of these axes (as indicated in Fig. 2.2). Consequently, the positive shear stresses 
on the faces through Q (i.e., further from the origin) are in the opposite direction. 

Unfortunately, this sign convention is the exact opposite of that used in the standard 
literature on the Theory of Elasticity (for example, Timoshenko and Goodier1, Crandall 
and Dahl2) and Plasticity (for example, Prager3, Hill4, Nadai5), so that care must be taken 
when reference and comparison are made with other texts. But because in soil mechanics 
we shall be almost exclusively concerned with compressive stresses which are universally 
assumed by all workers in the subject to be positive, we have felt obliged to adopt the same 
convention here. 

It is always possible to find three mutually orthogonal principal cleavage planes 
through any point P which will have zero shear stress components. The directions of the 
normals to these planes are denoted by (a, b, c), see Fig. 2.3. The array of three principal 
effective stress components becomes 
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and the directions (a, b, c) are called principal stress directions or principal stress axes.  
If, as is common practice, we adopt the principal stress axes as permanent reference axes 
we only require three data for a complete specification of the state of stress at P. However, 
we require three data for relating the principal stress axes to the original set of arbitrarily 
chosen reference axes (1, 2, 3). In total we require six data to specify stress relative to 
arbitrary reference axes. 

 
Fig. 2.3 Principal Stresses and Directions 

 
 2.3 Stress-increment 

When considering the application of a small increment of stress we shall denote the 
resulting change in the value of any parameter x by  This convention has been adopted in 
preference to the usual notation & because of the convenience of being able to express, if 
need be, a reduction in x by  and an increase by 

.x&

x&+ x&−  whereas the mathematical 
convention demands that xδ+ always represents an increase in the value of x. With this 
notation care will be needed over signs in equations subject to integration; and it must be 
noted that a dot does not signify rate of change with respect to time. 
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Hence, we will write stress-increment as 
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where each component ij'σ& is the difference detected in effective stress as a result of the 
small load-increment that was applied; this will depend on recording also the change in 
pore-pressure This set of nine components of stress-increment has exactly the same 
properties as the set of stress components 

.wu&

ij'σ  from which it is derived. Complementary 
shear stress-increments will necessarily be equal ;'' jiij σσ && ≡ and it will be possible to find 
three principal directions (d,e,f) for which the shear stress-increments disappear 0' ≡ijσ& and 
the three normal stress-increments ij'σ& become principal ones. 

In general we would expect the data of principal stress-increments and their 
associated directions (d,e,f) at any interior point in our soil specimen to be six data quite 
independent of the original stress data: there is no a priori reason for their principal 
directions to be identical to those of the stresses, namely, a,b,c. 
 
2.4 Strain-increment 

In general at any interior point P in our specimen before application of the load-
increment we could embed three extensible fibres PQ, PR, and PS in directions (1, 2, 3), 
see Fig. 2.4. For convenience these fibres are considered to be of unit length. After 
application of the load-increment the fibres would have been displaced to positions , 

, and . This total displacement is made up of three parts which must be carefully 
distinguished: 

Q'P'
R'P' S'P'

(a) body displacement 
(b) body rotation  
(c) body distortion. 

 
Fig. 2.4 Total Displacement of Embedded Fibres 

  
We shall start by considering the much simpler case of two dimensional strain in Fig. 2.5. 
Initially we have in Fig. 2.5(a) two orthogonal fibres PQ and PR (of unit length) and their 
bisector PT (this bisector PT points in the spatial direction which at all times makes equal 
angles with PQ and PR; PT is not to be considered as an embedded fibre). After a small 
increment of plane strain the final positions of the fibres are  and (no longer 
orthogonal or of unit length) and their bisector . The two fibres have moved 

Q'P' R'P'
T'P'
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respectively through anticlockwise angles α and β, with their bisector having moved 
through the average of these two angles. This strain-increment can be split up into the three 
main components: 

(a) body displacement represented by the vector  in Fig. 2.5(b); PP'
(b) body rotation of ( βαθ += 2

1& ) shown in Fig. 2.5(c); 
(c) body distortion which is the combined result of compressive strain-
increments 11ε&  and 22ε&  (being the shortening of the unit fibres), and a relative 
turning of the fibres of amount ( ),2

1
2112 αβεε −≡≡ && as seen in Fig. 2.5(d). 

 
Fig. 2.5 Separation of Components of Displacement 

 
 The latter two quantities are the two (equal) shear strain- increments of irrotational 
deformation; and we see that their sum ( )αβεε −≡+ 2112 && is a measure of the angular 
increase of the (original) right-angle between directions 1 and 2. The definition of shear 

 
Fig. 2.6 Engineering Definition of Shear Strain 

 
strain, γ,* often taught to engineers is shown in Fig. 2.6 in which 0=α and γβ −= and use 
of the opposite sign convention associates positive shear strain with a reduction of the 
right-angle. In particular we have 21122

1 εεγθ &&& ==−= and half of the distortion γ is really bodily 
rotation and only half is a measure of pure shear. 

Returning to the three-dimensional case of Fig. 2.4 we can similarly isolate the 
body distortion of Fig. 2.7 by removing the effects of body displacement and rotation. The 
displacement is again represented by the vector  in Fig. 2.4, but the rotation is that 
experienced by the space diagonal. (The space diagonal is the locus of points equidistant 
from each of the fibres and takes the place of the bisector.) The resulting distortion of Fig. 
2.7 consists of the compressive strain-increments 

PP'

332211 ,, εεε &&& and the associated shear 
strain-increments :,, 211213313223 εεεεεε &&&&&& === and here again, the first suffix refers to the 
direction of the fibre and the second to the direction of change. 
 
* Strictly we should use tan γ and not γ; but the definition of shear strain can only apply for angles so small that the 
difference is negligible.  
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Fig. 2.7 Distortion of Embedded Fibres 

 
We have, then, at this interior point P an array of nine strain measurements 
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of which only six are independent because of the equality of the complementary shear 
strain components. The fibres can be orientated to give directions (g, h, i) of principal 
strain-increment such that there are only compression components 
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The sum of these components ( )ihg εεε &&& ++ equals the increment of volumetric 
(compressive) strain ( )δνν −=& which is later seen to be a parameter of considerable 
significance, as it is directly related to density. 

There is no requirement for these principal strain-increment directions (g, h, i) to 
coincide with those of either stress (a, b, c) or stress-increment (d, e, f), although we may 
need to assume that this occurs in certain types of experiment. 

 
2.5 Scalars, Vectors, and Tensors 

In elementary physics we first encounter scalar quantities such as density and 
temperature, for which the measurement of a single number is sufficient to specify 
completely its magnitude at any point. 

When vector quantities such as displacement di are measured, we need to observe 
three numbers, each one specifying a component (d1, d2, d3) along a reference direction. 
Change of reference directions results in a change of the numbers used to specify the 
vector. We can derive a scalar quantity ( ) ( )iidddddd =++= 2

3
2

2
2

1  (employing the 
mathematical summation convention) which represents the distance or magnitude of the 
displacement vector d, but which takes no account of its direction. 

Reference directions could have been chosen so that the vector components were 
simply (d, 0, 0), but then two direction cosines would have to be known in order to define 
the new reference axes along which the non-zero components lay, making three data in all. 
There is no way in which a Cartesian vector can be fully specified with less than three 
numbers. 
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The three quantities, stress, stress-increment, and strain-increment, previously 
discussed in this chapter are all physical quantities of a type called a tensor. In 
measurement of components of these quantities we took note of reference directions twice, 
permuting through them once when deciding on the cleavage planes or fibres, and a second 
time when defining the directions of the components themselves. The resulting arrays of 
nine components are symmetrical so that only six independent measurements are required. 
There is no way in which a symmetrical Cartesian tensor of the second order can be fully 
specified by less than six numbers. 

Just as one scalar quantity can be derived from vector components so also it proves 
possible to derive from an array of tensor components three scalar quantities which can be 
of considerable significance. They will be independent of the choice of reference directions 
and unaffected by a change of reference axes, and are termed invariants of the tensor. 

The simplest scalar quantity is the sum of the diagonal components (or trace), such 
as ( ) ( ,''''''' 332211 cbaii )σσσσσσσ ++=++= derived from the stress tensor, and similar 
expressions from the other two tensors. It can be shown mathematically (see Prager and 
Hodge6 for instance) that any strictly symmetrical function of all the components of a 
tensor must be an invariant; the first-order invariant of the principal stress tensor is 
( ,''' cba )σσσ ++ and the second-order invariant can be chosen as 
( baaccb '''''' )σσσσσσ ++ and the third-order one as ( ).''' cba σσσ  Any other symmetrical 

function of a 3 × 3 tensor, such as ( )222 ''' cba σσσ ++ or ( ),''' 333
cba σσσ ++ can be expressed 

in terms of these three invariants, so that such a tensor can only have three independent 
invariants. 

We can tabulate our findings as follows: 
 

Array of zero order first order second order 
Type scalar vector tensor 

Example specific volume displacement stress 
Notation υ di ij'σ  

Number of 
components 30 = 1 31 = 3 32 = 9 

Independent data 1 3 
⎩
⎨
⎧

symetrical if 6
generalin  9

 

Independent scalar 
quantities that can be 

derived 
1 1 3 

 
2.6 Spherical and Deviatoric Tensors 

 A tensor which has only principal components, all equal, can be called spherical. 
For example, hydrostatic or spherical pressure p can be written in tensor form as: 
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For economy we shall adopt the last of these notations. A tensor which has one principal 
component zero and the other two equal in magnitude but of opposite sign can be called 
deviatoric. For example, plane (two-dimensional) shear under complementary shear 
stresses t is equivalent to a purely deviatoric stress tensor with components 
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It is always possible to divide a Cartesian tensor, which has only principal components, 
into one spherical and up to three deviatoric tensors. The most general case can be divided 
as follows 
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 2.7 Two Elastic Constants for an Isotropic Continuum 

A continuum is termed linear if successive effects when superposed leave no 
indication of their sequence; and termed isotropic if no directional quality can be detected 
in its properties.  

The linear properties of an elastic isotropic continuum necessarily involve only two 
fundamental material constants because the total effect of a general tensor ij'σ will be 
identical to the combined effects of one spherical tensor p and up to three deviatoric 
tensors, ti. One constant is related to the effect of the spherical tensor and the other to any 
and all deviatoric tensors. 

For an elastic specimen the two fundamental elastic constants relating stress-
increment with strain-increment tensors are (a) the Bulk Modulus K which associates a 
spherical pressure increment with the corresponding specific volume change p& ν&  
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and (b) the Shear Modulus G which associates each deviatoric stress-increment tensor with 
the corresponding deviatoric strain-increment tensor as follows 
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(The factor of 2G is a legacy from the use of the engineering definition of shear strain γ in 
the original definition of the shear modulus t = Gγ. We are also making the important 
assumption that the principal directions of the two sets of tensors coincide.) 

It is usual for engineers to derive alternative elastic constants that are appropriate to 
a specimen in an axial compression (or extension) test, Fig. 2.8(a) in which 

.0'';'' === cbla σσσσ &&&&  Young’s Modulus E and Poisson’s Ratio v are obtained from 
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By reference to Fig. 2.8(b) we can split this strain-increment tensor into its spherical and 
deviatoric parts as follows: 
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Fig. 2.8 Unconfined Axial Compression of Elastic Specimen 

 
But from eq. (2.5) 
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Substituting in eq. (2.8) and using eq. (2.7) we have 
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which gives the usual relationships 
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between the various elastic constants. 
We see that axial compression of 1/E is only partly due to spherical compression 

1/9K and mostly caused by shearing distortion 1/3G; conversely, indirect swelling v/E is 
the difference between shearing distortion 1/6G and spherical compression 1/9K. 
Consequently, we must realize that Young’s Modulus alone cannot relate the component of 
a tensor of stress-increment that is directed across a cleavage plane with the component of 
the tensor of compressive strain-increment that gives the compression of a fibre embedded 
along the normal to that cleavage plane. An isotropic elastic body is not capable of 
reduction to a set of three orthogonal coil springs. 
 
2.8 Principal Stress Space 

The principal stresses ( cba ',',' )σσσ experienced by a point in our soil continuum 
can be used as Cartesian coordinates to define a point D in a three-dimensional space, 
called principal stress space. This point D, in Fig. 2.9, although it represents the state of the 
particular point of the continuum which we are at present considering, only displays the 
magnitudes of the principal stresses and cannot fully represent the stress tensor because the 
three data establishing the directions of the principal stresses are not included. 

The division of the principal stress tensor into spherical and deviatoric parts can 
readily be seen in Figs. 2.9 and 2.10. Suppose, as an example, the principal stresses in 
question are ;3',6',12' === cba σσσ then, recalling eq. (2.4), 
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Fig. 2.9 Principal Stress Space 

 
Hence, we see that the point D which represents the state of stress, can be reached either in 
a conventional way, OD, by mapping the separate components of the tensor 
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and three different deviatoric stress tensors and mapping AB, BC, and CD: 

.
0

2
2

and,
3

0
3

,
1

1
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
 

So AB is a vector in the plane perpendicular to the u-axis and with equal and opposite 
components of unity parallel with the other two principal axes: and similarly BC and CD 
are vectors as shown.  

As mentioned in §2.1, the principal stress space is particularly favoured for 
representation of theories of the yield strength of plastic materials. Experiments on metals 
show that large changes of spherical pressure p have no influence on the deviatoric stress 
combinations that can cause yield. Consequently, for perfectly plastic material it is usual to 
switch from the principal stress axes to a set of Cartesian axes (x, y, z) where 
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     (2.10) 

 

 
Fig. 2.10 Section of Stress Space Perpendicular to the Space Diagonal 

 
The x-axis coincides with the space diagonal; change of spherical pressure has no 
influence on yielding and the significant stress combinations are shown in a plane 
perpendicular to the space diagonal. In the Fig. 2.10 we look down the space diagonal and 
see the plane yz: the z-axis is coplanar with the x-axis and the c'σ -axis, but of course the 
three axes ba ',' σσ and c'σ are to be envisaged as rising out of the plane of Fig. 2.10. The 
mapping of the three different deviatoric stress tensors of our example is shown by the 
pairs of vectors AB and BC and CD in Fig. 2.10. 

When we consider the yielding of perfectly plastic material the alternative theories 
of strength of materials can be either described by algebraic yield functions or described by 
symmetrical figures on this yz-plane, as we will now see in the next section. 
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2.9 Two Alternative Yield Functions 
Two alternative yield functions are commonly used as criteria for interpretation of 

tests on plastic behaviour of metals. The first, named after Tresca, suggests that yield 
occurs when the maximum shear stress reaches a critical value k. We can see the effect of 
the criterion in the sector where in which the function becomes 

02'' =−−= kF ca σσ         (2.11) 

and the intersection of this with the plane ( ) .const'''
3
1

=++= cbap σσσ defines one side IN 

of the regular hexagon INJLKM in Fig. 2.11. The other sides are defined by appropriate 
permutation of parameters. 
The second function, named after Mises, is expressed as 

( ) ( ) ( ) 02'''''' 2222 =−−+−+−= YF baaccb σσσσσσ     (2.12) 
where Y is the yield stress obtained in axial tension. This function together with 

( ) const.'''
3
1

=++= cbap σσσ  has as its locus a circle of radius Y⎟
⎠
⎞

⎜
⎝
⎛

3
2 in Fig. 2.11. Since 

these two loci are unaffected by the value of the spherical pressure ( ) ,'''
3
1 pcba =++ σσσ  

they will generate 

 
Fig. 2.11 Yield Loci of Tresca and Mises 

 
for various values of p (or x) hexagonal and circular cylinders coaxial with the x-axis. 
These are illustrated in Fig. 2.12: these cylinders are examples of yield surfaces, and all 
states of stress at which one or other criterion allows material to be in stable equilibrium 
will be contained inside the appropriate surface. 
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Fig. 2.12 Yield Surfaces in Stress Space 

 
Most tests are what we will call axial tests, in which a bar or cylinder of material 

sustains two radial principal stresses of equal magnitude (often but not always zero) and 
the axial principal stress is varied until the material yields in compression or extension. 
Data of stresses in such axial tests will lie in an axial-test plane in principal stress space; 
the three diagonal lines IL, JM, KN, in Fig. 2.11, each lie in one of the three such planes 
that correspond to axial compression tests with cba oror ''' σσσ respectively as the major 
principal stress. Now if we consider, for example, the axial-test plane for which ,'' cb σσ =  
this intersects Tresca’s yield surface in the pair of lines ,2'' kca ±=−σσ and it intersects 
Mises’ yield surface in the pair of lines .'' Yca ±=−σσ We cannot use axial-test data to 
decide which yield function is appropriate to a material  –  each will fit equally well if we 
choose 2k = Y. More refined tests* on thin-wall tubes of annealed metal in combined 
tension and torsion do appear to be fitted by Mises’ yield function with rather more 
accuracy than by Tresca’s yield function: however, the error in Tresca’s function is not 
sufficient to invalidate its use in appropriate calculations. 

  
2.10 The Plastic-Potential Function and the Normality Condition 

As engineers, we concentrate attention on yield functions, because when we design 
a structure we calculate the factor by which all loads must be multiplied before the 
structure is brought to collapse. We use elastic theory to calculate deflections under 
working loads, and generally neglect the calculation of strain-increments in plastic flow. 
We will find in later chapters that our progress will depend on an understanding of plastic 
flow. 

When any material flows without vorticity it is possible to find a potential function, 
such that the various partial derivatives of that function at any point are equal to the 
various velocity components at that point. We will meet ‘equipotentials’ when we discuss 
seepage in the next chapter, but the idea of a potential is not restricted to flow of water. It 
is the nature of plastic material to flow to wherever it is forced by the heavy stresses that 
bring the material to yield, so the potential function for plastic flow must be a function of 
the components r of stress. The classical formulation of theory of plasticity considers a 
class of materials for which the yield function F(u) also serves as the plastic potential for 
the flow. Each of the plastic strain-increments is found from the partial derivatives of the 
yield function by the equation (which is in effect a definition of plasticity) 

ij

ij
p F

'σ
εν

∂
∂

=&           (2.13) 

* An early set of tests was carried out in the engineering laboratories at Cambridge by G. I. Taylor and H. Quinney.7  
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where v is a scalar factor proportional to the amount of work used in that particular set of 
plastic strain-increments. 

If a material yields as required by Mises’ function, eq. (2.12), we can calculate the 
gradients of this potential function as 
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For given values of ( )cba ',',' σσσ these equations fix the relative magnitudes of the strain-
increments, but the number v which adjusts their absolute magnitudes will depend on the 
amount of work used to force that particular set of plastic strain-increments. With given 
values of ( cba ',',' )σσσ  we can equally well associate a point in principal stress space on 
the yield surface: we can then visualize the plastic strain-increment vector as being normal 
to the yield surface at that point. Once we have decided upon a yield surface then the 
associated flow rule of the theory of plasticity obeys a normality condition: for Mises’ 
yield function the plastic strain-increments are associated with vectors perpendicular to the 
cylindrical surface, while for Tresca’s yield function the associated vectors are 
perpendicular to the faces of the hexagonal prism. 
 
2.11 Isotropic Hardening and the Stability Criterion 

In the yielding of a metal such as annealed copper we observe, as shown in Fig. 
2.13, that once the material has carried an axial stress Y it has hardened and will not yield 
again until that stress Y is exceeded. We will be particularly interested in a class of 
isotropic hardening plastic materials, for which we can simply substitute the increasing 
values of Y into equations such as (2.12) and get yield surfaces that expand symmetrically.  

Our assumption of isotropic hardening does not mean that we dismiss an apparent 
occurrence of Bauschinger’s effect. Some metal specimens, on hardening in axial tension 
to a stress Y, will yield on reversal of stress at an axial compressive stress less than Y, as 
illustrated in Fig. 2.13: in metals this indicates some anisotropy. In soil the yield strength is 
found to be a function of spherical pressure 

 
Fig. 2.13 Hardening in an Axial Test 
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and specific volume, so a major change of yield strength is to be expected on reversal of 
stress without anisotropy. 

In Fig. 2.14(a) we have sketched a yield locus .0=F  The vector ij'σ represents a 
combination of stress that brings the material to the point of yielding. The fan of small 
vectors ij'σ& represent many possible combinations of stress-increment components which 
would each result in the same isotropic hardening of the material to a new yield 
locus  In Fig. 2.14(b) we sketch a normal vector to the yield locus: no matter what 
stress-increment vector is applied the same associated plastic strain-increments will occur 
because they are governed by the particular stress combination that has brought the 
material to yield. The plastic strain-increments are not related directly to the stress-
increments, nor are they directly proportional to the stress components (we can see in the 
figure that the strain- increment vector is not sticking out in the same direction as the 
extension of

.0'=F

ij'σ ). The plastic strain-increments are found as the gradients of a potential 

function  –  the function is F and is normal to F. ij
pε&

Engineers have understandably been slow to accept that the materials with which 
they commonly work really do obey this curious associated flow rule. Recently, D. C. 
Drucker8 has introduced the most persuasive concept of ‘stability’ which illuminates this 
matter. For all stress-increment vectors directed outwards from 

  
Fig. 2.14 Isotropic Hardening and Associated Plastic Flow 

  
the tangent to the yield locus, the vector product of the stress-increment vector ij'σ& with the 

associated plastic strain-increment vector will be positive or zero ij
pε&

          (2.14) .0' ≥ij
p

ij εσ &&

Plastic materials are stable in the sense that they only yield for stress increments that 
satisfy eq. (2.14). It is not appropriate for us now to make general statements that go 
further with the stability concept: it has been the subject of various discussions, and from 
here on we do best to develop specific arguments that are appropriate to our own topic. 
Our chapters 5 and 6 will pick up this theme again and go some way towards fulfilment of 
a suggestion of Drucker, Gibson, and Henkel9, that soil behaviour can be described by a 
theory of plasticity.10,11 

 

 

2.12 Summary 
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Most readers will have some knowledge of the theories of elasticity, plasticity and 
soil mechanics, so th

 components can be defined in the 

at parts of this chapter will already be familiar to them. As a 
consequence, the omission and the inclusion of certain material may seem curious on first 
reading, but the selection and emphasis are deliberate. 

We are concerned with the development of a continuum analysis, so that we need 
to be clear about the manner in which stress and strain
interior of a granular body. It will be found that the current state of a soil depends on the 
stress and the specific-volume: stress is a second-order symmetrical tensor which requires 
six numbers for a definition, while specific volume is a scalar and is defined by one 
number. By emphasizing the importance of the elastic bulk modulus K and shear-modulus 
G we hope to develop a feeling for these tensor and scalar quantities. 

For those who are familiar with Mohr’s circle as a representation of stress it may be 
a surprise to find no mention of it in this chapter, although it will be required as an 
appendix to chapters 8 and 9. Its omission at this stage is deliberate on the grounds that 
Mohr’s representation of stress imparts no understanding of the interrelation of stress-
increment and strain-increment in elastic theory, that it plays little part in continuum 
theories, and that the uncritical use of Mohr’s circle by workers in soil mechanics has been 
a major obstacle to the progress of our subject. 

In contrast, the representation of stress ,'ijσ  stress-increment ij'σ& and strain-
increment ,ijε& as compact symbols with the tens uffix is helpful to r progress. 
Representation of stress in principal stress space is useful and gives an understanding of 
the difference between spherical pressure and the deviatoric stress tensors. A cautionary 
word is needed to remind our readers that when a point in principal stress space is defined 
by three numbers we necessarily assume that we know the three direction cosines of 
principal directions (needed to make up the six numbers that define a symmetrical 3×3 
tensor). When we plot a stress-increment tensor in the same principal stress space, or 
associate a normal vector to a yield surface with the plastic strain-increment tensor, we 
necessarily assume that these tensors have the same principal directions: if not, then some 
more information is needed for the definition of these tensors. It will follow that the 
principal stress space representation is appropriate for discussion of behaviour of isotropic 
materials in which all principal directions coincide. 

We have met yield surfaces that apply to the yielding of elastic/plastic metal. As 
long as the material is elastic the stress and strain 

or s  ou

are directly related, so the state of the 
metal at yield must be a function of stress, and the yield surface can be defined in principal 
stress space. When metals yield, only plastic distortion occurs, and there is no plastic 
volume change. The hardening of metal can be defined by a family of successive surfaces 
in principal stress space and the succession is a function of plastic distortion increment. 
However, soils and other granular materials show plastic volume change, and we will need 
to innovate in order to represent this major effect. 

We have defined a parameter p, where 

3
''' cbap σσσ ++

=       from eq. (2.4) 

gives an average or mean of the 
pressure. One innovation that we will introduce is to propose that soil is a material for 
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